学习资料 2021-03-18 338
数学是不少初三学生的噩梦。很多学生反映,怎样努力学就是提不高分数。数学想要学好,尤其要注意基础知识的学习。基础打得牢,成绩不会差。在此,汇总一下初三数学知识点,记牢多考10分!
最新初三数学知识点汇总
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三角形全等
全等的条件
1.两个三角形对应的两边及其夹角相等,两个三角形全等,简称“边角边”或“SAS”。
2.两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”。
初三数学知识点
3.两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”。
4.两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS"。
5.两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”。
注意,证明三角形全等没有“SSA”或“边边角”的方法,即两边与其中一边的对角相等无法证明这两个三角形全等,但从意义上来说,直角三角形的“HL”证明等同“SSA”。
(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
(2)有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
(3)有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
初三数学知识点
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)
④两相切圆的连心线过切点(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。
平时数学该怎样学,期末能拿高分?
1、一定要认真听讲,习题课要比讲新课更认真
上课的时候要认真听,尤其是老师讲例题时候,发现不懂的一定要记下来,然后仔细琢磨,不行要问老师,一般课上40多分钟很难一直集中注意力,因此要在关键时候好好听,在老师讲话空隙的时候可以放松一下
2、刷题,但不要盲目地刷
刷题,要精准打击,攻破自己薄弱的知识点,需要先刷基础题来弄懂这个知识点的概念,再刷中等题进行进一步的理解,最后再刷难题。
2、整理错题
其实错题簿很好用,考试前直接翻译就可以了,但是,大家可能没有那么多时间,因为考试多,所以有很多问题,大家可以在练习题的页面上订一张纸。
以上就是关于初三数学知识点的所有内容了。建议考试前,把上面的知识点逐个看一下,理解一下,看是否有自己不懂得地方,在着重复习。
文章来源于网络,如有版权问题请联系我们删除!
推荐阅读 2018年中考数学易错知识点汇总 2017年中考《数学》数与运算知识点汇总 2016年中考数学考试必备知识点汇总 2020年中考数学考试易错知识点汇总 初三数学上册常考知识点记忆方法 初三数学知识点归纳总结 初三数学应该怎么写
点击访问更多木玛升学网的 学习资料资讯
上一条: 实用的初中数学知识点有哪些呢? 下一条: 九年级数学期末试卷答案 九年级数学期末试卷练习资料
暂无数据