高一数学重要知识点【函数的奇偶性】

学习资料 2021-03-18 536

高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高一数学知识点,下面学大教育网为大家带来高一数学重要知识点【函数的奇偶性】,希望对大家掌握数学知识有所帮助。

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

学大教育网为大家带来了高一数学重要知识点【函数的奇偶性】,希望大家能够熟记这些数学知识点,更多的高一数学知识点请查阅学大教育网。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 高一数学重要知识点【映射、函数、反函数】 高一数学重要知识点【函数的单调性】 高一数学重要知识点【函数的图象】 高一数学重要知识点【函数的值域与最值】 北师大版高一数学上学期指数函数函数奇偶性知识点 高一数学重要知识点【函数的解析式与定义域】

点击访问更多木玛升学网的 学习资料资讯

上一条: 高一数学重要知识点【函数的值域与最值】 下一条: 高一数学重要知识点【函数的单调性】

网友评论 共0条

暂无数据