学习方法 2021-08-11 343
一.知识框架
二.知识概念
二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,其中√0=0
对于本章内容,教学中应达到以下几方面要求:
1. 理解二次根式的概念,了解被开方数必须是非负数的理由;
2. 了解最简二次根式的概念;
3. 理解并掌握下列结论:
1) 是非负数; (2) ; (3) ;
4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;
5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章 一元二次根式
一.知识框架
二.知识概念
一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p&plu