学习方法 2021-09-02 375
全等三角形知识点
1.全等图形:能够完全重合的两个图形就是全等图形。
2.全等图形的性质:全等多边形的对应边、对应角分别相等。
3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
说明:
全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。
这里要注意:
(1)周长相等的两个三角形,不一定全等;
(2)面积相等的两个三角形,也不一定全等。
小练习
1.下列说法中正确的说法为()
①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,
A.①②③④B.①③④C.①②④D.②③④
2.一个正方形的侧面展开图有()个全等的正方形.
A.2个B.3个C.4个D.6个
3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()
①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.
A.1个B.2个C.3个D.4个
三角形全等的判定知识点
1、三角形全等的判定公理及推论有:
(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。
(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。
(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。
(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。
2、直角三角形全等的判定
利用一般三角形全等的判定都能证明直角三角形全等.
斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”).
注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。
小练习
1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______
核心考点:全等三角形的判定
2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______
核心考点:三角形的稳定性
3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______
核心考点:全等三角形的判定
角的平分线的性质知识点
1.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
2.判定定理:到角的两边距离相等的点在该角的角平分线上。
3.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:
①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),
②、回顾三角形判定,搞清我们还需要什么,
③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)
文章来源于网络,如有版权问题请联系我们删除!
推荐阅读 人教版八年级上册数学知识点总结 八年级上册历史知识点总结(人教版) 初二数学上册知识点归纳人教版 八年级下册数学知识点人教版 人教版初二数学上册知识点归纳2016 (人教版)初三上册数学知识点
点击访问更多木玛升学网的 学习方法资讯
上一条: 人教版八年级上册数学知识点总结 下一条: 人教版八年级上册历史知识点总结
暂无数据