学习方法 2021-09-03 417
分式知识点
1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再约分;(3)约分一定要把公因式约完。
实数知识点
1、实数的分类:有理数和无理数
2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.
3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.(若a与b护卫相反数,则a+b=0)
4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.
5、倒数:乘积为1的两个数
6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)
7、平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.(算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.)
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|
①a为正数时,|a|=a(不变),a是它本身;
②a为0时,|a|=0,a也是它本身;
③a为负数时,|a|=-a(为a的绝对值),-a是a的相反数。
(任何数的绝对值都大于或等于0,因为距离没有负数。)
3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)
4)数轴
定义:规定了原点,正方向和单位长度的直线叫数轴
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
平方根与立方根知识点
平方根:
概括1:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,如果x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。
因为(&plu