学习资料 2021-03-18 565
(一)、概念梳理
⑴列一元一次方程解决实际问题的一般步骤是:审题,特别注意关键的字和词的意义,弄清相关数量关系,注意单位统一,注意设未知数;
①解:设出未知数(注意单位),
②根据相等关系列出方程,
③解这个方程,
④答(包括单位名称,最好检验)。
⑵一些固定模型中的等量关系:
①数字问题: 表示一个三位数,则有 =100a+10b+c(数位上的数字×位数)
②行程问题:基本公式:路程=时间×速度
甲乙同时相向行走相遇时:甲走的路程+乙走的路程=总路程
甲走的时间=乙走的时间;
甲乙同时同向行走追及时:甲走的路程-乙走的路程=甲乙之间距离
③工程问题(整体1):基本公式:工作量=工作时间×工作效率
各部分工作量之和 = 总工作量;
④储蓄问题:本息和=本金+利息;利息=本金×利率×时间
⑤商品销售问题:商品利润=售价-进价(成本价)
商品利润率=(售价-进价)/进价
⑥等积变形问题:面积或体积不变
⑦和、差、倍、分问题:多、少、几倍、几分之几
⑧按比例分配问题:一般设每份为x如:2:3:4为2x、3x、4x
⑨资源调配问题:资源、人员的调配(有时要间接设未知数)
(二)、思想方法(本单元常用到的数学思想方法小结)
⑴模型思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立一元一次方程的思想.
⑵方程思想:用方程解决实际问题的思想(如:按比例分配、线段的长、角的大小等)就是方程思想.
⑶转化(归纳)思想:解一元一次方程的过程,实质上就是利用去
分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.
⑷数形结合思想:如:数轴问题、在列方程解决行程问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直
观地展示出来,体现了数形结合的优越性.
⑸分类(整体)思想:如:绝对值、偶次方、点在线段上(延长线上、线段外)、角在角内(外)在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.
文章来源于网络,如有版权问题请联系我们删除!
推荐阅读 初一上册数学期末复习知识点:实数 初一上册数学期末复习要点:整式的加减 初一上册语文期末知识点复习:叙述人称 人教版初一上册语文期末知识点复习:词汇积累 人教版初一上册数学期末复习要点:有理数 初一数学一元一次方程应用及练习知识点
点击访问更多木玛升学网的 学习资料资讯
上一条: 几何图形知识点复习:七年级上册数学期末考试 下一条: 初一上册数学期末复习要点:整式的加减
暂无数据