2017高考数学必考点【棱锥的性质】整理

学习资料 2021-03-18 311

高考数学一直是很多考生头疼的科目,考生难以取得数学高分是因为没有掌握好考点,为了帮助大家掌握好数学考点,下面学大教育网为大家带来2017高考数学必考点【棱锥的性质】整理,希望大家用心记住这些数学考点。

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD. 令,已知.

iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

2017高考数学必考点【棱锥的性质】整理是学大教育网为大家精心总结的,希望大家能够在复习数学考点的时候多下功夫,这样就能在高考数学考试中取得满意的成绩。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 2017高考数学必考点【棱锥定义与公式】整理 2017高考数学必考点【概率的基本性质】整理 2017高考数学必考点【抛物线的性质】整理 2017高考数学必考点【等差数列的定义及性质】整理 2017高考数学必考点【棱锥定义与公式】讲解 2017高考数学必考点【椭圆的性质_顶点范围_对称性_离心率】整理

点击访问更多木玛升学网的 学习资料资讯

上一条: 2017高考数学必考点【真命题和假命题】整理 下一条: 2017高考数学必考点【空间向量的模】整理

网友评论 共0条

暂无数据