初一下册数学复习资料

学习方法 2021-08-06 305

【篇一:概念知识】

  1、单项式:数字与字母的积,叫做单项式。

  2、多项式:几个单项式的和,叫做多项式。

  3、整式:单项式和多项式统称整式。

  4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。

  5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。

  6、余角:两个角的和为90度,这两个角叫做互为余角。

  7、补角:两个角的和为180度,这两个角叫做互为补角。

  8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。

  9、同位角:在“三线八角”中,位置相同的角,就是同位角。

  10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。

  11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。

  12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。

  13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

  14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

  16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。

  17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

  18、全等图形:两个能够重合的图形称为全等图形。

  19、变量:变化的数量,就叫变量。

  20、自变量:在变化的量中主动发生变化的,变叫自变量。

  21、因变量:随着自变量变化而被动发生变化的量,叫因变量。

  22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形

  叫做轴对称图形。

  23、对称轴:轴对称图形中对折的直线叫做对称轴。

  24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)

  【篇二:计算能力】

  (A)整式的计算。

  1、整式的加减

  去括号,合并同类项!

  2、幂运算(七个公式)

  ①同底数幂相乘:底数不变,指数相加。②幂的乘方:底数不变,指数相乘。

  ③积的乘方:等于每个因数乘方的积。④同指数幂相乘:指数不变,底数相乘。

  【篇三:相交线与平行线】

  一、知识网络结构

  二、知识要点

  1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。+=180°;+=180°;+=180°;

  +=180°。

  4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。

  5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a⊥b时,====90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  6、同位角、内错角、同旁内角基本特征:

  ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

  的两个角叫同位角。图3中,共有对同位角:与是同位角;

  与是同位角;与是同位角;与是同位角。

  ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  平行线的性质:

  性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

  则=;=;=;=。

  性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。

  性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;

  +=180°。

  性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

  8、平行线的判定:

  判定1:同位角相等,两直线平行。如图5所示,如果=

  或=或=或=,则a∥b。

  判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。

  判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;

  +=180°,则a∥b。

  判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

  9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

  10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

  平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

  【篇四:实数】

  【知识点一】实数的分类

  1、按定义分类:2.按性质符号分类:

  注:0既不是正数也不是负数.

  【知识点二】实数的相关概念

  1.相反数

  (1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

  (2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

  (3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.

  2.绝对值|a|≥0.

  3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.

  4.平方根

  (1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

  (2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.

  5.立方根

  如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

  【知识点三】实数与数轴

  数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

  【知识点四】实数大小的比较

  1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

  2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 初一下册数学知识要点 初一数学下册辅导资料《同底数幂的除法》知识点 初一下册数学知识点总结沪教版 初一下册数学第一章知识点总结 初一下册数学《三角形》知识点 初一年级下册历史复习资料2019

点击访问更多木玛升学网的 学习方法资讯

上一条: 初一下册数学第一章知识点总结 下一条: 初一下册数学知识点总结北师大版

网友评论 共0条

暂无数据